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Quasistatic scale-free networks
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A network is formed using th&l sites of a one-dimensional lattice in the shape of a ring as nodes and each
node with the initial degrel;,=2. N links are then introduced to this network, each link starts from a distinct
node, the other end being connected to any other node with degeeelomly selected with an attachment
probability proportional tck®. Tuning the control parameter, we observe a transition where the average
degree of the largest nod&,,(a,N)) changes its variation fror® to N at a specific transition point af. .

The network is scale free, i.e., the nodal degree distribution has a power law decay éqy.
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The nodal degree distribution function of a scale-free netdependence on the degree destroys the scale-free behavior,
work (SFN) has a power law ta[l1]. Empirical data obtained i.e., the power law variation of the degree distributiaf.
for several social, biological, and computational networksindeed, if in general the degree dependence has a variation
have confirmed the existence of such probability distribu-with the ath power of the degree, it has been shown that the
tions decaying as power la8—4]. For example, the world- scale-free nature of the BA model network exists only for
wide web[5] which is a network of web pages and the hy- =1 and for no other value of it, smaller or larger.
perlinks among various pages and the Internet netj®lrkf Several other interesting networks are also studied. €£rdo
routers or autonomous systems follow power lawsPék) and Rayi studied long ago random graphsihodes where
~k™7. The exponenty varies between 2 and 3 for these links are introduced with probabilitp between arbitrary
networks. pairs of randomly selected nodes. A largest component of

Networks are classified here as “growing,” “quasistatic,” such a network connecting nodes of the ordeXafppears at
and “static.” In a growing networkKGN) the nodes are in- a particular value op.= 1/N. Very recently, SFNs have been
troduced in the network one after another. After introducingstudied on Euclidean spaces where the BA attachment prob-
the node, a link is introduced connecting this node to one o#bility is modified by a link length¢ dependent factor
its previous nodes. Therefore, in a GN both the numbers of9—12]. Load distribution in scale-free networks has also
nodes as well as links grow with time. In contrast, in the cas&een studied13].
of a quasistatic networlQN) a fixed numbeN of nodes are In this paper we ask the question if the growing condition
present at the initial stag&\ links are then introduced one of the BA model is really a necessity to achieve a scale-free
after another between pairs of nodes using some specifigetwork. We will see below that it is not, a suitable choice of
probability distribution. Therefore in a QN, the number of the attachment probability in a quasistatic network may re-
nodes in the network is fixed but the number of links growsult a power law decay for the degree distribution as well.
with time. Finally, in a static network both the number of We call our model as the quasitatic scale-free network
nodes as well as the number of links remain fixed and do nofQSFN. Recently, Doye has shown that the network topol-
grow with time. ogy of a potential energy landscape is a static scale-free net-

Barabai and Albert(BA) proposed1] a simple model for  work [14]. Assigning a quenched intrinsic fitness to every
a growing SFN that has the following two essential ingredi-node and using the attachment probabilities depending on the
ents. fithesses it is also possible to get SFNs without growth and

(i) A network grows from an initial set af, nodes with  preferential attachmenf45]. A steady state model for scale-
m<m, links among them. Further, at every time step a newfree graphs has also been propoE&4l.
node is introduced and is randomly connectedtprevious Our quasistatic model starts with a one-dimensional regu-
nodes. lar lattice in the form of a circular ring as in the Watts and

(if) Any of thesem links of the new node introduced at Strogatz's small-world networkL7]. The lattice had\ nodes
time t connects a previous nodewith an attachment prob- serially marked fromi=1 to N andN links between succes-
ability a;(t) which is linearly proportional to the degree sive pairs of nodes with periodic boundary condition. Each
k;(t) of theith node at time: wiBA(t)~ki(t). For BAmodel node is therefore connected to only two of its nearest neigh-
vy=3[2]. bors situated on the opposite sides and the ddgrés each

The second criterion reflects the phenomenon of “richnodei is exactly 2 to begin with. We add to this system
gets richer,” i.e., a node with a large degree attracts morenotherN distinct links in total, such that a new link starts
nodes to get linked. Krapivskgt al. showed that this linear from each node. Ath link is added at timé and one end of
dependence is a necessary condition and any other nonlingiris attached to théth node, the other end of the link is

connected to a nodewith degreek;(t) selected randomly
from the rest of theN—1 nodes of the system using the
*Corresponding author. Email address: manna@boson.bose.resfollowing attachment probability:
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where « is a continuously tunable parameter. Therefore
when the network is complete, no node is left with degree 2.
At this point we would like to clearly distinguish between -
our QSFN and the modd [18]. Model B also starts with a
collection of N nodes but no links, so that the initial degree -
of each node is strictly zero and the graph Nasomponents, 2=
each with only one node. At each time step a node se- /
lected randomly with uniform probability and is connected to - /
another nod¢ with a probability 7rj(t) ~k;(t). This implies o
that isolated nodes are being linked one by one to a single
connected component of the graph. For this component, both
the number of nodes as well as the links grow with time and
therefore modeB is clearly a growing network. This is in
contrast to our QSFN model where the initial network i a FIG. 1. A quasistatic scale-free network with 128 nodes placed
node connected graph that grows by adding further links buén a circular ring so that the initial degrkg;, of each node is equal
not the nodes anymore. to 2. Nodes are then selected one after another without repetition
In the case ofv=0 in QSFN, all nodes have equal prob- and are randomly linked to other nodes with an attachment prob-
abilities to get connected by a new link and this is the ran-ability proportional tok®. In this picturea=2.6 is used and a large
dom network model8] for which the degree distribution is degree node is visible.

e Pasan bt o1 0, 2Tt L SR e oy an ). T n s s e by
9 gher p ytd y N°18and the ordinate is scaled B °?' and we get a nice

The case ofa=1 corresponds to the similar atta(.:hmemcollapse of three curves of sizéé=282%° and 22 This
probability as in the BA model of SFN. Our simulation re- S O
analysis implies that the order parameter curves in Fig. 2

sults show that the degree distribution in this case has alscome progressively sharper as the network Nzgadu-

exponentially decaying form:P(k)~exp(—ak) with a . . .
= . . ) ally increases an@(a,N) increases very rapidly at;(c).
~1.08. On continuously increasing further larger degree This variation is very similar to the variation of the order

n_ode_s b_ecome more probable and we see that the degr rameterthe fraction of mass in the largest clugtar the

distribution decays less sharply and changes to a stretch lati h

exponential form a® (k) ~ exg —k{®)]. The exponen(a) -0 ation phenomena. . .

decreases continuously from its valué latl to y~0.3 at The scaling of the order parameté(a,N) is shown in
y X5 Fig. 4. Asymptotically asN— the ¢(a,N)—0 for a<a

a=1.75. but for finite N we subtract theb(1,N) from ¢(«,N) and try

O'? ncreasing the paramet@rfurther the system makes 4 1o scale only the difference. We assume the following scaling
transition to a different behavior where a single node havm%ehavior'

the maximum degrelk,, connects to a finite fraction of the
nodes. However, this transition takes place at a specific value L0 — /

N

a. of a so that the degree distribution has a power law tail
and therefore the network is scale free fora# a. (Fig. 1).
Naturally, the control parameter in this modekiswhere
as like the phenomenon of percolation, an order parameter in
this problem may be the average degree of the largest node
é(a,N)=(kn(a,N))/N. We monitor the variation of
¢(a,N) with & and plot them in Fig. 2 for networks of three
different sizesN=28, 210 and 22 A sharp increase in the 04 |
order parameter is observed aroume 2, again the sharp-
ness of the curves increases with The first derivative
d¢(a,N)/da of the order parameter is plotted in Fig. 3 for
seven different network sizes. Every curve has a peak at

02 r

someN dependent value at.(N) where¢(a,N) increases 0.0 © . .
at the fastest rate. For locating the precise valuevgfo) L5 20 2.5 30 35
where this transition is taking place for an infinitely large o
. 71/ -
network, we plota(N) values as a function di =" in the FIG. 2. The variation of the order parameigfa,N) which is

inset of Fig. 2. Using a trial value af=5 we could get all  the average degree of the largest node dividetl ith « for three
seven points on a straight line and on extrapolating to thejitferent network size\=28 (circle), 21° (squarg, and 22 (tri-
N—ce limit we get a (%) =1.85+0.10. angle. The inset shows the plot of the threshold valaggN) with

All the first derivative curves are suitably scaled in the N=%2 for seven differeniN values from Z to 2'° increasing by a
inset of Fig. 3 and the data are collapsed. Each curve is firsactor of 2 at each step.
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FIG. 5. Scaled degree distributions at the transition points

FIG. 3. The local derivative of the order parameter 4 (N) for different network sizes have been plotted. Data collapse
d¢(a,N)/de has been plotted witk for seven differenN values s obtained for largé values wherP(k,a,N)N” has been plotted
starting from 2 and increasing by a factor of 2. Scaling of the with k/N¢ with =3, andé=1. This gives the degree distribution
derivative is done in the inset fad=28,2'%, and 22 by plotting  exponenty= 7/£=3.
[dop(a,N)/da]N"%2 ys[a— ag(N)INO18
the fractal dimension of the infinite incipient percolation
clusters at the percolation threshold.

Finally, the degree distributio (k,a:(N),N) is calcu-
. . . lated for different network sizehl at their transition points
where the scaling funcuoﬁ-‘(x)ﬁxﬁ for x<1. I_:rom Fig. 4 a.(N). In these calculations we have not counted the maxi-
we getv=3 and 5=0.075. This value ofv is not very ., degree node similar to what is usually done to estimate

Eopsstetnr;[ vtwiﬂ_ltsd\_/fefllue o optalged Itn tthhe '?.S?tt of .F'g' 2f Wethe cluster size distribution at the percolation threshold. Ex-
elieve that this difference 1S due 1o the inite size o ourcept for very smallk values all distribution curves have

simulations. . ; L ;
straight portions on double logarithmic plots and the region

The dependence of the average d_egﬁte,g(qc,N)) of the over which nearly constant slopes are observed, increases

largest node'r|ght at the transition pom ac Is also SIUd.'ed . with increasingN. The fluctuating data are suitably binned:

and plotted in the inset of Fig. 4 on a double logarithmic or eachk value the data are averaged over the bin fioto

scale. Assuming a power law dependence on the networ k—1 and is plotted afk(2k—1)]¥2 We assume a scaling

size with an exponent as(ky(ac,N))~N* the plot gives .. jike

a value of=0.91+0.04. Hereu is an exponent similar to

[#(a,N) = S(LN)INF"=F[(a—ac)N*], ()

P(k, ac(N),N)N7~G(k/N?), ®)

=
>
.

where G(x) is expected to be an universal scaling function
such thatG(x)—x~? for x<1 so thaty= »/£. The scaling
plot is shown in Fig. 5 where we get=3 andé=1 giving
vy=3 as in the BA model of SFN. This is a very interesting
10' result that even on a static network with a suitable attach-
ment probabilityk® with a nontrivial value ofe one gets a
scale-free degree distribution for the network, the distribu-
tion being the same as the BA model of SFN.

What happens when> «.? Our observation is that de-

[o(0,N)—0(1,N)IN"**

0.0

10’ 100 N 10

16

gree distribution is still a power law but the exponenis
now « dependent. In the range at=3, the degree exponent
v is approximately equal tax whereas fora.<a<3,
v(a)=3.

We have also tried a more stochastic version of this model

8
13
[e—o (N)IN where to add a link, we select in parallel two nodes arbi-

FIG. 4. Scaling of the order parameterf¢(a,N) trarily frgm_the whole set ofN nodes using the attachment
— $(LN)IN95 is plotted with[ a— a(N)]NY3 for the data col- probability in Eq.(1). If these two nodes are not the same
lapse. The inset shows that average degree of the largest nof®de, we connect them. This is also a QSFN but the differ-
(km(a,N)) varies asN* at the transition point, where we ob- ence here is that both the nodes of each link are selected
tained ©=0.91+0.04. The dotted line, having a slope unity, is randomly, whereas in the QSFN described above only one
given to compare with the data. node is selected randomly and the other node is selected
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systematically one after another from the set of nodes. Oucally attach the one end of each link to one node, the other

numerical studies indicate that behaviors of both versions arend of the link is probabilistically attached to any other node

very similar. of degreek with a probability proportional tk®. Our nu-
Another variation of our model has been studied with ini- merical study indicates that there exists a transition pejnt

tial degrees of all nodes a@g,=1 which corresponds to a peyond which the resulting network has a scale-free structure

situation where alternate pairs of nodes on an onegq that the degree distribution has a power law tail dor
dimensional ring shaped lattice are linked. Again we numeri— ..

cally observe thatr.=1.67+0.10 andy(«.)~2.5 for this

model. We gratefully acknowledge P. Sen, D. Stauffer, and D.
To summarize, we have studied a QSFN where we have Bhar for their critical reading of the manuscript and many

collection of N nodes initially present, each node is having useful comments and also A.-L. Barab#or helpful sugges-

ki, initial degree. A system ol links are then introduced, tions. G.M. gratefully acknowledges the hospitality at the S.

one corresponding to each node. That means we systemall: Bose National Center for Basic Sciences.
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