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Quasistatic scale-free networks
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A network is formed using theN sites of a one-dimensional lattice in the shape of a ring as nodes and each
node with the initial degreekin52. N links are then introduced to this network, each link starts from a distinct
node, the other end being connected to any other node with degreek randomly selected with an attachment
probability proportional toka. Tuning the control parametera, we observe a transition where the average
degree of the largest node^km(a,N)& changes its variation fromN0 to N at a specific transition point ofac .
The network is scale free, i.e., the nodal degree distribution has a power law decay fora>ac .
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The nodal degree distribution function of a scale-free n
work ~SFN! has a power law tail@1#. Empirical data obtained
for several social, biological, and computational netwo
have confirmed the existence of such probability distrib
tions decaying as power laws@2–4#. For example, the world-
wide web@5# which is a network of web pages and the h
perlinks among various pages and the Internet network@6# of
routers or autonomous systems follow power laws asP(k)
;k2g. The exponentg varies between 2 and 3 for thes
networks.

Networks are classified here as ‘‘growing,’’ ‘‘quasistatic
and ‘‘static.’’ In a growing network~GN! the nodes are in-
troduced in the network one after another. After introduc
the node, a link is introduced connecting this node to one
its previous nodes. Therefore, in a GN both the numbers
nodes as well as links grow with time. In contrast, in the c
of a quasistatic network~QN! a fixed numberN of nodes are
present at the initial stage.N links are then introduced on
after another between pairs of nodes using some spe
probability distribution. Therefore in a QN, the number
nodes in the network is fixed but the number of links gro
with time. Finally, in a static network both the number
nodes as well as the number of links remain fixed and do
grow with time.

Barabási and Albert~BA! proposed@1# a simple model for
a growing SFN that has the following two essential ingre
ents.

~i! A network grows from an initial set ofmo nodes with
m,mo links among them. Further, at every time step a n
node is introduced and is randomly connected tom previous
nodes.

~ii ! Any of thesem links of the new node introduced a
time t connects a previous nodei with an attachment prob
ability p i(t) which is linearly proportional to the degre
ki(t) of the i th node at timet: p i

BA(t);ki(t). For BA model
g53 @2#.

The second criterion reflects the phenomenon of ‘‘r
gets richer,’’ i.e., a node with a large degree attracts m
nodes to get linked. Krapivskyet al. showed that this linea
dependence is a necessary condition and any other nonl
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dependence on the degree destroys the scale-free beh
i.e., the power law variation of the degree distribution@7#.
Indeed, if in general the degree dependence has a varia
with theath power of the degree, it has been shown that
scale-free nature of the BA model network exists only
a51 and for no other value of it, smaller or larger.

Several other interesting networks are also studied. Er¨s
and Rényi studied long ago random graphs ofN nodes where
links are introduced with probabilityp between arbitrary
pairs of randomly selected nodes@8#. A largest component of
such a network connecting nodes of the order ofN appears at
a particular value ofpc51/N. Very recently, SFNs have bee
studied on Euclidean spaces where the BA attachment p
ability is modified by a link length, dependent factor
@9–12#. Load distribution in scale-free networks has al
been studied@13#.

In this paper we ask the question if the growing conditi
of the BA model is really a necessity to achieve a scale-f
network. We will see below that it is not, a suitable choice
the attachment probability in a quasistatic network may
sult a power law decay for the degree distribution as w
We call our model as the quasitatic scale-free netw
~QSFN!. Recently, Doye has shown that the network top
ogy of a potential energy landscape is a static scale-free
work @14#. Assigning a quenched intrinsic fitness to eve
node and using the attachment probabilities depending on
fitnesses it is also possible to get SFNs without growth a
preferential attachments@15#. A steady state model for scale
free graphs has also been proposed@16#.

Our quasistatic model starts with a one-dimensional re
lar lattice in the form of a circular ring as in the Watts an
Strogatz’s small-world network@17#. The lattice hasN nodes
serially marked fromi 51 to N andN links between succes
sive pairs of nodes with periodic boundary condition. Ea
node is therefore connected to only two of its nearest ne
bors situated on the opposite sides and the degreeki for each
node i is exactly 2 to begin with. We add to this syste
anotherN distinct links in total, such that a new link star
from each node. Atth link is added at timet and one end of
it is attached to thetth node, the other end of the link i
connected to a nodej with degreekj (t) selected randomly
from the rest of theN21 nodes of the system using th
following attachment probability:s.in
©2003 The American Physical Society01-1
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p j~ t !;kj
a~ t !, ~1!

where a is a continuously tunable parameter. Therefo
when the network is complete, no node is left with degree

At this point we would like to clearly distinguish betwee
our QSFN and the modelB @18#. Model B also starts with a
collection ofN nodes but no links, so that the initial degre
of each node is strictly zero and the graph hasN components,
each with only one node. At each time step a nodei is se-
lected randomly with uniform probability and is connected
another nodej with a probabilityp j (t);kj (t). This implies
that isolated nodes are being linked one by one to a sin
connected component of the graph. For this component,
the number of nodes as well as the links grow with time a
therefore modelB is clearly a growing network. This is in
contrast to our QSFN model where the initial network is aN
node connected graph that grows by adding further links
not the nodes anymore.

In the case ofa50 in QSFN, all nodes have equal pro
abilities to get connected by a new link and this is the r
dom network model@8# for which the degree distribution i
the Poisson distribution@2#. For a.0, a node with larger
degree has a higher probability to get connected by lin
The case ofa51 corresponds to the similar attachme
probability as in the BA model of SFN. Our simulation r
sults show that the degree distribution in this case has
exponentially decaying form:P(k);exp(2ak) with a
'1.08. On continuously increasinga further larger degree
nodes become more probable and we see that the de
distribution decays less sharply and changes to a stret
exponential form asP(k);exp@2kx(a))]. The exponentx(a)
decreases continuously from its value 1 ata51 to x'0.3 at
a51.75.

On increasing the parametera further the system makes
transition to a different behavior where a single node hav
the maximum degreekm connects to a finite fraction of theN
nodes. However, this transition takes place at a specific v
ac of a so that the degree distribution has a power law
and therefore the network is scale free for alla>ac ~Fig. 1!.

Naturally, the control parameter in this model isa, where
as like the phenomenon of percolation, an order paramete
this problem may be the average degree of the largest n
f(a,N)5^km(a,N)&/N. We monitor the variation of
f(a,N) with a and plot them in Fig. 2 for networks of thre
different sizesN528, 210, and 212. A sharp increase in the
order parameter is observed arounda52, again the sharp
ness of the curves increases withN. The first derivative
df(a,N)/da of the order parameter is plotted in Fig. 3 fo
seven different network sizes. Every curve has a peak
someN dependent value ofac(N) wheref(a,N) increases
at the fastest rate. For locating the precise value ofac(`)
where this transition is taking place for an infinitely larg
network, we plotac(N) values as a function ofN21/n in the
inset of Fig. 2. Using a trial value ofn55 we could get all
seven points on a straight line and on extrapolating to
N→` limit we get ac(`)51.8560.10.

All the first derivative curves are suitably scaled in t
inset of Fig. 3 and the data are collapsed. Each curve is
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shifted by an amountac(N). Then the abscissa is scaled b
N0.18 and the ordinate is scaled byN20.21 and we get a nice
collapse of three curves of sizesN528,210, and 212. This
analysis implies that the order parameter curves in Fig
become progressively sharper as the network sizeN gradu-
ally increases andf(a,N) increases very rapidly atac(`).
This variation is very similar to the variation of the ord
parameter~the fraction of mass in the largest cluster! in the
percolation phenomena.

The scaling of the order parameterf(a,N) is shown in
Fig. 4. Asymptotically asN→` the f(a,N)→0 for a,ac
but for finiteN we subtract thef(1,N) from f(a,N) and try
to scale only the difference. We assume the following scal
behavior:

FIG. 1. A quasistatic scale-free network with 128 nodes pla
on a circular ring so that the initial degreekinit of each node is equa
to 2. Nodes are then selected one after another without repet
and are randomly linked to other nodes with an attachment p
ability proportional toka. In this picturea52.6 is used and a large
degree node is visible.

FIG. 2. The variation of the order parameterf(a,N) which is
the average degree of the largest node divided byN with a for three
different network sizesN528 ~circle!, 210 ~square!, and 212 ~tri-
angle!. The inset shows the plot of the threshold valuesac(N) with
N20.2 for seven differentN values from 27 to 213 increasing by a
factor of 2 at each step.
1-2
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@f~a,N!2f~1,N!#Nb/n5F@~a2ac!N
1/n#, ~2!

where the scaling functionF(x)→xb for x!1. From Fig. 4
we get n53 and b50.075. This value ofn is not very
consistent with its value 5 obtained in the inset of Fig. 2. W
believe that this difference is due to the finite size of o
simulations.

The dependence of the average degree^km(ac ,N)& of the
largest node right at the transition pointa5ac is also studied
and plotted in the inset of Fig. 4 on a double logarithm
scale. Assuming a power law dependence on the netw
size with an exponentm as ^km(ac ,N)&;Nm the plot gives
a value ofm50.9160.04. Herem is an exponent similar to

FIG. 3. The local derivative of the order paramet
df(a,N)/da has been plotted witha for seven differentN values
starting from 27 and increasing by a factor of 2. Scaling of th
derivative is done in the inset forN528,210, and 212 by plotting
@df(a,N)/da#N20.21 vs @a2ac(N)#N0.18.

FIG. 4. Scaling of the order parameter:@f(a,N)
2f(1,N)#N0.025 is plotted with @a2ac(N)#N1/3 for the data col-
lapse. The inset shows that average degree of the largest
^km(a,N)& varies asNm at the transition pointac where we ob-
tained m50.9160.04. The dotted line, having a slope unity,
given to compare with the data.
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the fractal dimension of the infinite incipient percolatio
clusters at the percolation threshold.

Finally, the degree distributionP„k,ac(N),N… is calcu-
lated for different network sizesN at their transition points
ac(N). In these calculations we have not counted the ma
mum degree node similar to what is usually done to estim
the cluster size distribution at the percolation threshold. E
cept for very smallk values all distribution curves hav
straight portions on double logarithmic plots and the reg
over which nearly constant slopes are observed, incre
with increasingN. The fluctuating data are suitably binne
for eachk value the data are averaged over the bin fromk to
2k21 and is plotted at@k(2k21)#1/2. We assume a scaling
form like

P„k,ac~N!,N…Nh;G~k/Nj!, ~3!

whereG(x) is expected to be an universal scaling functi
such thatG(x)→x2g for x!1 so thatg5h/j. The scaling
plot is shown in Fig. 5 where we geth53 andj51 giving
g53 as in the BA model of SFN. This is a very interestin
result that even on a static network with a suitable atta
ment probabilityka with a nontrivial value ofa one gets a
scale-free degree distribution for the network, the distrib
tion being the same as the BA model of SFN.

What happens whena.ac? Our observation is that de
gree distribution is still a power law but the exponentg is
now a dependent. In the range ofa>3, the degree exponen
g is approximately equal toa whereas forac<a<3,
g(a)'3.

We have also tried a more stochastic version of this mo
where to add a link, we select in parallel two nodes ar
trarily from the whole set ofN nodes using the attachmen
probability in Eq.~1!. If these two nodes are not the sam
node, we connect them. This is also a QSFN but the dif
ence here is that both the nodes of each link are sele
randomly, whereas in the QSFN described above only
node is selected randomly and the other node is sele

de

FIG. 5. Scaled degree distributions at the transition poi
ac(N) for different network sizes have been plotted. Data collap
is obtained for largek values whenP(k,ac ,N)Nh has been plotted
with k/Nj with h53, andj51. This gives the degree distributio
exponentg5h/j53.
1-3
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systematically one after another from the set of nodes.
numerical studies indicate that behaviors of both versions
very similar.

Another variation of our model has been studied with i
tial degrees of all nodes askin51 which corresponds to a
situation where alternate pairs of nodes on an o
dimensional ring shaped lattice are linked. Again we num
cally observe thatac51.6760.10 andg(ac)'2.5 for this
model.

To summarize, we have studied a QSFN where we ha
collection of N nodes initially present, each node is havi
kin initial degree. A system ofN links are then introduced
one corresponding to each node. That means we system
A.

om

e
E

01210
ur
re

-

-
i-

a

ati-

cally attach the one end of each link to one node, the ot
end of the link is probabilistically attached to any other no
of degreek with a probability proportional toka. Our nu-
merical study indicates that there exists a transition pointac

beyond which the resulting network has a scale-free struc
so that the degree distribution has a power law tail fora
>ac .
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